
PROPAGATION OF DISCONTINUITIES IN SOUND WAVES 

(BASPUOSTBANBNIK K~ZBYV~V v z~uzovruz VOLNA~II) 

PM Va1.22, No.4, 1958, pp.561-564 

K. E. QUEKIN 
(Yoscor) 

(Received 4 Yareh 1958) 

In this paper a solution of the equation of gas dynamics is presented 

which describes the propagation of waves of small amplitude. The extent 
of the disturbed region (the length in the direction of motion of the 
wave front within which the variables in the disturbed motion are of 
significant magnitude) is assumed to be small in comparison with the 
characteristic dimension of the problem. The nonlinear properties of the 
motion, exhibited in effect whenever the wave traverses distances sub- 
stantially greater than the length of the disturbed region, leads to a 
change in the profile of the wave, and the development of discontinuities 
in it. Computation of the nonlinear factors points to a damping of the 
shock front, a result that is in accord with acoustic theory [ 1. 2 I. In 
the case of propagation of spherical (or cylindrical) waves in a homo- 
geneous stationary medium, the results agree with those obtained earlier 
in work by Landau [ 3 I. Khristianovich [ 4 1 , and Whitham [ 5 I. 

1. Characteristics. The basic system of equations of motion of a com- 
pressible gas has the form: 

where Ui, p. p, c denote respectively the velocity of the gas density, 
pressure, and velocity of sound, at a point with Cartesian coordinates 
xi at time t; gi is the acceleration due to gravity. and the indices i 
and k take the values 1, 2 and 3. The prensure, density and velocity of 
sound are related to one another by the equation of state yp = pe* where 
y is a constant equal to the ratio of the specific heats of the gas. 

We consider the characteristics of the system (1.1). The equation de- 

termining the characteristic surfaces #xi, t) = constant has the form: 
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If the expression 
to zero, we obtain 

which determines two families of characteristics C+ and C_ (correspond- 
ing to the choice of signs of the square root). If in the equation 

4(%i* t) = constant, t is considered a parameter, in place of character- 
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In square brackets in equation (1.21 is set equal 

(1.3) 

istic surfaces C+ and C_ stationary in (xi, t) space, we would have 
moving surfaces N+ and N_ in (zi) space. The velocity of propagation of 
these surfaces, according to equation (1.31, is equal to vi+ cai where 
ni, the unit vector normal to the surfaces N+ or N_, Is defined by 

Setting the second bracket of equation (1.21 equal to zero. we obtain 

$ + Ok -g- = 0 (1.41 

which determines a family of characteristic surfaces Cc, defining the 
paths of particles. Corresponding to the characteristic Co, moving in 
(xi1 space, we now have a surface S moving with the gas particles. 

ge use the following notation for the derivative along a character- 
istic surface, 

As a result of the reduction of the system (1.1) to characteristic 
form, we obtain equations containing derivatives of the desired functions 
only along corresponding characteristic surfaces. Along the character- 
istics C+ and C_ 

l”h. rt cnk) (g) f PC (niz’k f %) (2) 7 + vnkgk (4.5) 

C __ 

CO 

The upper sign in (1.51 corresponds to C+, and the lower one to the 
characteristic; 6 ik = 1 for i = k. and aik = 0 for i f k. Along the 
- characteristic 

uk(-+2uk(-$)=0 (1.6) 

The vector si in (1.6) satisfies the condition si&$/azi = 0 (that is, 
the direction of si is tangential to the stream surface S). Since on the 
surface S there are two independent vectors satisfying this condition, 
the first equation (1.6) resolves into two independent equations. 
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Thus, along the CO-characteristic, we hare three relations. corres- 
ponding to the fact that for a hroerbolic system of equations (1.11, sur- 
faces determined by the trajectories of particles are three coincident 
families of characteristics. 

2. eeometrlcal acomstics. Promgatioa of diecomtlnuities of all 
amplitude. We determine the solution of characteristic systems of equa- 
tions which correspond to the propagation of waves of small amplitude 
with a disturbed region of small extent. 

Suppose that in the undisturbed region, the pressure p,,, density pu 

and the fluid velocity Uil are independent of time, and given as functions 
of the coordinates. We assume that the disturbance vreeeure b = p - po, 
density 8 = p - pu and velocity si P vi - Ui are small quantities of the 
first order in comparison with the undisturbed pressure pg. density pu 
and velocitg of sound cu. The length of the disturbed region A is assumed 
to be small in comparison with the radius of curvature It of the wave 
front, and in comparison with the characteristic length lf in which the 
medium changes perceptibly. In this case it is neOesearY to neglect terms 
of the order d. x h/R, Ah/E in comparison with A Furthermore we shall 
assume that in directions tangential to the wave front, the chances In 
magnitude of the functions h. 6. si are of the same order as the auantitiee 
themeelree over distances much larger than the length of the disturbed 
region (that is, over distances of the order of R and 8). 

We consider a diverging wave bounded externally by the surface N. We 
determine the C+ characteristics so that at the initial instant t = 0 
they pass through a family of surfaces euuidlstant from the wave front 
(N+ for t P 0). The characterietioe C_ and Co are determined 80 that they 
pass through the wave front at the same time. With this choice of 
characteristics. the angles between the normals to the moving surfaces 

N+. N_, S, N. within the disturbed region of length of order A, will not 
exceed magnitudes of the order x/R, A/E. 

We write equation (1.61 for the C,,-characteristics in the form 

Here d/d: = vc(6’/dxkl Indicates differentiation along a particle path. 

Integrating these equations with respect to time along the trajectory 
of the particle, and noting that the time a particle remains In the dis- 
turbed region is A/c,, we obtain 
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s,u,=O(~AlH)f O(XA/H) (2-i) 
(2.2) A-c~~~=O(~A/R)+O(AA/H)+O(A~) 

The first of these equations is equivalent to: 

ui-Uuni=Oi(hA/R)+Oi(hA/H) (u = 1/Y&) 

The equation in the C_-characteristics ma,v be written in the form 

auk ank $ (A - pcu) = pcnpk 2 - yA x - QC% G - 

k 
) 

2 + PC tniuk - c8ik) (&) tUi - wri) - u + 

Here d/dt = (VI - cnk) (d/dzk) signifies the derivative along the tra- 
jectory of the element of a surface N_. 

lince the surface N_ is found in the dlstnrbed region for a time X/Q, 
integration of the equation with respect to t gives 

A-p,c,u=O(AA/R)+O(hA/H)+O(A’) (2.3) 

We notice that equations (3.1). (2.2) and (2.3) agree with relations 
st the shock front, if small terms of order AA/R, x A/n. 
ed; therefore the shock front does not influence the flow 
that approximation. 

We now turn to the equation for the C+ characteristics 
we write in the form 

A2 are neglect - 
behind it to 

(1.5). which 

A + ni - 4 + 
) ( 

“k-“k 
) 

Eere d/dt = (vk + ca,C ) (d/drk) denotes the derivative along the ray - 
the trajectory of an element of the surface N+. Integrat lag this equation 
along the ray, and neglecting small terms of order A D/R, A A/E. and A2 
In comparison with h we obtain the result: 

(2.4) 

The magnitude a (on the given ray ) depends on the size of the surface 
N+. If the length of the ray is designated by 1. the velocity of motion 
of the surface N+ is dl/dt. and therefore the equation for the C+-character- 
istlc (1.3) can be written along the ray in the form 
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; = I/(Vk + Cnk)P = 

If, in this equation, we replace b by its value from equation (2.41. 
and neglect terms which are small compared to h. we obtain, on integra- 
tion, the solution 

t t 

1 -lo = s Jl (U, + conk)2 dt + a -+ s (nkUk + co) dt 
+ f(a) (2.5) 

0 
o 1/ t”k + cOnk)8 GL ’ 

where f(a) is an arbitrary function which is determined by the pressure 
specified in the wave at the initial time, lo is the position of the wave 
front for t = 0. The first term on the right of the solution (2.5) de- 
termines the translational motion of the wave as a whole; the second 
determined the change of its *profile” with time. 

We now obtain the equation for a ray in a similar manner. In equation 
(1.3). which determines the motion of a N+ surface, we may neglect terms 
which are small in comparison with the undisturbed velocity of sound CD, 
and so determine the ray from the equation 

From this, we have the equation of the ray in the form 

dzi 
dt = vi + coni, 

We can use the solution of (2.51 which we obtained earlier, to deter- 
mine the law of change of pressure at the front of the shock wave. Along 
the path of the front 1 = 1( tl we have 

which follows directly from the equation relating the pressure at the 
shock front with its velocity. if only terms of the first order are con- 
sidered. Differentiating equation (2.51 with respect ton along the path 
of the front, and replacing dZ/dt by .its value from (2.61. we obtain 

From this we deduce that the law of variation of a at the head of the 
shock wave, along the ray. is 
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I 

aa s (nkuti + Cn) dc 

1, ('k + 

af’ (a) da (2.7) 

If at the initial instant the pressure across the wave is continuous, 
the moment when the discontinuity appears is determined from equation 
(2.5) in the same way as In the case of the one-dimensional flow of gas 

(61. For 1 > > lo the disturbed region, from the condition of conservation 
of’ energy, must contain both a region with A > 0, and a region with 6 < 0 
(this condition does not apply to a plane rave). From equations (2.5) and 

(2.V it follows that for I > > lo, the pressure proflle bebing the wave 
front is approximately linear. and independent of the profile of the wave 
at the initial instant. The amplitude of the wave with linear pressure 
profile behind the front changes, from equation (2.7). according to the 
law I 

A = a, 6X tnkUk + CO) dl 
L 

-- 
(u, + c”n,,.)’ r/put, L > 

--‘/a 

where A, Is the breadth of the region A> 0 at t = 0. 

In a uniform medium at rest the surface of the wave front tends to 
become spherical as R + w , and the amplitude of the wave falls off 
according to the law A= B/i/R 4 In R where B = constant for the given ray. 
The quantity B in this relation may be different in different directions, 
if the initial conditions do not have spherical symmetry. This solution 
for the uniform stationary medium is the asymptotic solution of equation 
(1.1) as R + 0~. for an arbitrary disturbance of finite energy, although 
in this case the breadth of the disturbed region is compared only with 
the radius of the curved wave ‘front and h/R -P 0 as R + 00. 

For a nonuniform moving medium the condition 
t 

H>)a=b+LgLS;A “k 'k + ‘o dt 

II 
POCO V(u~+collk)? 

must also be used, where the integral is evaluated along the path of the 
front. This fact limits the application of the resulting solution when 
1+ m. 
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